IDENTIFYING SUBSTITUTED CYANOButADIYNEs BY GAS-PHASE IR SPECTROSCOPY: THEORY AND EXPERIMENT

M. M. Montero-Campillo
UNIVERSIDAD AUTÓNOMA DE MADRID

A. Benidar, C. Rouxel, N. Kerisit, Y. Trolez, J.-C. Guillemin, Otilia Mó, Manuel Yáñez
OUTLINE

- Cyanobutadiynes in the interstellar medium
- The technical stuff!
- IR results: experiment & theory
R-(C≡C)₂-CN

If R = H:

- Cyanobutadiyne (HC₅N) was detected in interstellar medium in 1976.*
- Higher homologues have been detected up to HC₁₁N (1997).** The abundance of the cyanopolyynes decreases with length, the decrement between one to the next being about six for the longer carbon chains.

Its methyl derivative (MeC₅N) was detected in that medium in 2006 in the cold dark dust cloud Taurus Molecular Cloud 1.*

No larger methyl derivatives have been found by now.

Methyl derivatives can serve as indicators of gas-phase production schemes.

Importance of Me, C≡C, CN groups

The bromine derivative (BrC₅N) was very recently (2015) obtained by Jean-Claude Guillemin & col.*

BrC₅N >> HC₇N >> MeC₇N

The IR spectrum of HC₅N: already studied in detail.**

Our goal: to study MeC₅N and BrC₅N to determine the effects of substituents on the C₅N group. The IR spectrum of MeC₅N gives a tool for its detection and quantification.

The synthesis of these substituted cyanobutadiynes is challenging. Compounds HC$_5$N, MeC$_5$N are obtained by dehydration of the corresponding amide.*

Synthesis of BrC$_5$N: **

\[\text{H-TIPS} \begin{align*} \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{O} + \text{MeO-P(OMe)}_2\text{N} & \xrightarrow{\text{Cs}_2\text{CO}_3, \text{MeOH}} \text{H-TIPS} \begin{align*} \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{H} \
\text{MeO-P(OMe)}_2\text{N} \end{align*} \\ \text{Br} \begin{align*} \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{CN} \end{align*} & \xrightarrow{\text{NBS, AgF, MeCN}} \text{Br} \begin{align*} \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{C} \equiv \text{CN} \end{align*} \]

MeC₅N and BrC₅N have been prepared

IR in the 500-4000 cm⁻¹ spectral range

Ab initio and DFT calculations - MOLPRO & Gaussian09

CCSD(T) cc-pVTZ + harmonic frequencies
B3LYP cc-pVTZ/cc-pV5Z + harmonic frequencies - Scaled & Not scaled
B3LYP and CCSD(T) -agreement
Best agreement with the experiment: scaled B3LYP cc-pVTZ

QTAIM

IR RESULTS: EXPERIMENT & THEORY

- CCSD(T)
- CCSD(T) corrected *
- MW (exp)
- QTAIM

- Average deviation is 0.004 Å
- Subtle differences on bonding that will be reflected in the IR spectra
- Rotational constant MeC$_5$N B 785.13 [778.04] MHz

Main peaks: coupling between triple carbon bond stretching displacements and the cyano group stretching, modes (a) and (b).
IR RESULTS: EXPERIMENT & THEORY

- Gap between bands: BrC₅N > 44.4 cm⁻¹ (harm), 46.4 cm⁻¹ (anhar); MeC₅N > 13.7 cm⁻¹ (harm), 23.4 cm⁻¹ (anhar) – Agreement with QTAIM
- Stretching modes Me group 3000 cm⁻¹
- Single CC bonds - stretching modes around 1228 cm⁻¹
IR RESULTS: EXPERIMENT & THEORY

- BrC₅N - weak absorption around 760 cm⁻¹, C-Br stretching coupled with C-C stretching modes.
- MeC₅N- 1400 cm⁻¹ deformation displacements Me group, 1000 cm⁻¹ rocking displacements Me group.
- Some features cannot be explained considering fundamental vibrational modes: 2500 cm⁻¹ - 1st overtone chain-stretching fundamental band (d)
- BrC₅N - additional band - combination band involving the fundamental chain stretching band (c) and the fundamental C-Br stretching (327 cm⁻¹)

X = Br, CH₃
CONCLUSIONS

- The IR spectra of BrC₅N and MeC₅N have been recorded within the 4000-500 cm⁻¹ spectral region and calculated by means of ab initio and DFT calculations.

- They look quite similar but there are subtle differences mainly in the strength of the C≡C bond directly attached to the substituent (distances & AIM results).

- BrC₅N presents two well differentiated strong bands around 2250 cm⁻¹, MeC₅N one single band. In both cases these bands are the result of a coupling between C≡C and C≡N stretching displacements.

- The MeC₅N spectrum gives a tool for its detection and quantification. The comparison with HC₅N and BrC₅N evidences the importance of the substituents in their spectral fingerprints.
THANKS

People from Institute de Physique de Rennes
A. Benidar

People from Institute des Sciences Chimiques de Rennes
C. Rouxel, N. Kerisit, Y. Trolez, J-C. Guillemin

People from my group at Universidad Autónoma de Madrid
Otilia Mó, Manuel Yáñez
*Y. Benilan et al. J. Mol. Spectrosc. 2007, 245, 109 - 114

[Graph showing absorption spectra with labeled peaks and vibrational modes]
a) H-C≡C-CN \xrightarrow{193 \text{ nm}} H^+ + C≡C-CN

b) Me-\overset{\text{H}}{\text{C≡C-H}} + C≡C-CN \rightarrow Me-\overset{\text{H}}{\text{C≡C-C≡C-CN}} + H^+

Scheme 1. Proposed mechanism of formation of MeC_5N (4) from HC_3N (1) and propyne (11).

\[\text{NC-C≡C-CN} \xrightarrow{h\nu} \text{NC}^+ + C≡C-CN \]

\[\text{Me-C≡C-C≡C-H} \]

\[\text{Me-C≡C-C≡C-CN} \]

\[\text{Me-C≡C-C≡C-CN} + H^+ \]

\[\text{Me-C≡C-C≡C-CN} \]

Scheme 2. Proposed mechanism of formation of MeC_5N (4) from C_4N_2 and: a) 1,3-pentadiyne (6), or b) propyne (11).